Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Gabor Karsai

Gabor Karsai

Vanderbilt University, USA

Title: Towards a resilient information architecture platform for smart grid

Biography

Biography: Gabor Karsai

Abstract

Smart grid functions, like protection, autonomous energy management, remedial action schemes and micro grid control need not only intelligent algorithms but also a robust, secure and decentralized software platform enables timely decision making and control. Such a platform acts as an operating system for grid applications; it provides core services for distributed algorithms: Real-time messaging paradigms, service discovery, fault management, time synchronization, secure communications and operations, as well as application management. By necessity, the applications have to run close to the physical system, as the round trip delays to the cloud are not affordable. Our team is developing such a platform that is slated to run on a distributed hardware architecture involving fog computing nodes and networks. The platform includes a design-time and a run-time component: In design-time developers use a model-based software development paradigm to build and verify distributed applications. The development tools include domain specific modeling tools and code generators that synthesize component-based application. The runtime tools include a middleware layer that implements the message-based application component model and a set of service managers that provide application management, discovery, high precision time synchronization, fault tolerance and security functions. The platform has been tested with a number of applications, including microgrid control, remedial action schemes and transactive energy. The platform runs on fog computing nodes to satisfy stringent real-time and autonomy requirements. The novel capabilities of the platform allow the development and operation of resilient, distributed, real-time applications that must exhibit a very high degree of dependability.

Speaker Presentations

Speaker PDFs

Speaker PPTs Click Here